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In this Introduction to the Named Series ‘‘Epigenetics, Brain, Behavior, and Immunity” an overview of epi-
genetics is provided with a consideration of the nature of epigenetic regulation including DNA methyla-
tion, histone modification and chromatin re-modeling. Illustrative examples of recent scientific
developments are highlighted to demonstrate the influence of epigenetics in areas of research relevant
to those who investigate phenomena within the scientific discipline of psychoneuroimmunology. These
examples are presented in order to provide a perspective on how epigenetic analysis will add insight into
the molecular processes that connect the brain with behavior, neuroendocrine responsivity and immune
outcome.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A remarkable growth in the understanding of epigenetics and the
impact of epigenetics on contemporary biology has occurred in re-
cent years. This growth in the field of epigenetics has transformed
our conceptualization of the impact of the environment upon our
genes and upon our health (Feinberg, 2008). As well, the study of epi-
genetics has fueled research in the behavioral sciences, as recent
work demonstrates that epigenetic modifications shape behavior,
modulate stress responsivity, and alter immune function. This facet
of epigenetics seeks to understand the interactive linkages that con-
nect the psychological and social environment with the epigenetic
processes that modulate gene expression and influence behavior
(Zhang and Meaney, 2010). In a similar manner, the integrative field
of psychoneuroimmunology continues to advance the understand-
ing of the complex networks that connect brain, behavior and immu-
nity. In that field, attention is now focused on the analysis and
understanding of the molecular processes, which underlie these
complex networks. This understanding, viewed through the lens of
epigenetics, provides for a new opportunity to address long-
standing as well as emerging issues in psychoneuroimmunology.

The psychosocial context of the environment can substantially
change behavior and alter nervous, endocrine and immune function
(Eskandari and Sternberg, 2002). Recent findings within the realm of
behavioral epigenetics demonstrate that stressors and/or adverse
psychosocial environments can affect gene expression by altering
the epigenetic pattern of DNA methylation and/or chromatin struc-
ture. The vast majority of existent evidence within the scope of
behavioral epigenetics emanates from investigations of early life
adversity that produce epigenetic modifications within relevant
brain regions that influence behavior. As well, emerging evidence
shows that, adults also respond epigenetically to environmental sig-
nals, which in turn influence behavior, physiological outcome, and
disease risk (Feinberg, 2008; Foley et al., 2009; Handel et al.,
2010). At this time, however, few studies have evaluated whether
ll rights reserved.
the epigenome of cells and tissues of the immune system is sensitive
to the environmental context, and this area provides ample opportu-
nity for further exploration. What is clear, however, is that the
advances in this field add to the ‘‘seductive allure of behavioral epi-
genetics,” which has generated intense interest within many scien-
tific disciplines (Miller, 2010). Given the central influence of the
environment on the integrative network that links brain, behavior,
and immunity; this allure promises to invigorate many facets of
investigation in psychoneuroimmunology that seek to unravel
how environmental signals are transduced to the genome.

The overarching mission of this Journal is to understand the
behavioral, neural, endocrine, and immune system interactions rel-
evant to health and disease. With this in mind, the purpose of this
Introduction to the Named Series ‘‘Epigenetics, Brain, Behavior, and
Immunity” is to; provide an overview of epigenetic processes, pres-
ent available examples of scientific inquiry demonstrating the
influence of epigenetics relevant to psychoneuroimmunology,
and finally to provide a perspective on future possibilities wherein
epigenetics may significantly enrich the understanding of the asso-
ciations that exist among brain, neuroendocrine, immune and
behavioral processes.

2. Overview of epigenetic processes

2.1. The epigenome

Epigenetics refers to a variety of processes that affect gene
expression independent of actual DNA sequence. Epigenetic infor-
mation provides instruction on how, where, and when, genetic
information will be used. Hence, the importance of epigenetic
information is that it regulates gene expression. Epigenetics can re-
fer to heritable effects on gene expression, or to the stable long-
term alteration of the transcriptional potential of a cell, which
may not necessarily be heritable. Most importantly, epigenetic
information is susceptible to change, and as such, represents an
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marks in other disease associated tissues. Epigenetic marks are tis-
sue and cell specific, as well as dependent on stage of life and gen-
der. Evaluation of postmortem specimens provides useful data but
is also fraught with issues related to tissue preservation and retro-
spective design limitations. Yet, significant insight regarding envi-
ronmental-signaled epigenetic modifications in human tissues and
cells may be gleaned from the evaluation of surgically removed tis-
sues/organs. Despite these challenges, integrating epigenetics into
human investigations in psychoneuroimmunology offers exciting
possibilities for the future. Such studies can provide key insight
regarding the impact of environment–gene interaction on behavior
and vulnerability to disease over the lifespan. Likewise, under-
standing those epigenetic processes that contribute to a resilient
phenotype in human paradigms can lead to new insight about indi-
vidual differences in response to environmental challenge.

In conclusion, it is likely that epigenetic patterns translate or at
least contribute to the relationship between the environment and
human health. This possibility opens wide a vista of potential
interventions, including behavioral or dietary interventions that
can take advantage of the plasticity of the epigenome (Handel
et al., 2010). Interventions aimed at manipulating the epigenome
are currently underway for many hematological malignancies
and many more will follow. Direct manipulation of the epigenome
is a real and promising possibility (Feinberg, 2008). Although there
is much work to do, epigenetics and the epigenome deserve con-
sideration for any investigation analyzing the linkages among
brain, behavior, and immunity. The scope of epigenetics offers am-
ple opportunity to chart new directions in basic, translational, and
clinical research within the broad framework of psychoneuroim-
munology. Important questions await investigation that can inte-
grate multiple levels of inquiry, from molecular to behavioral.
More than 25 years ago, scientists were captivated by the allure
of the emerging field of psychoneuroimmunology. At this juncture,
it is now clear that psychoneuroimmunology and the emerging
field of epigenetics share a common vision that guides discovery,
and the fusion of these two fields can only lead to remarkable sci-
entific advancements.
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